Hierarchical and Reweighting Cluster Kernels for Semi-Supervised Learning
نویسندگان
چکیده
منابع مشابه
Hierarchical and Reweighting Cluster Kernels for Semi-Supervised Learning
Abstract: Recently semi-supervised methods gained increasing attention and many novel semi-supervised learning algorithms have been proposed. These methods exploit the information contained in the usually large unlabeled data set in order to improve classification or generalization performance. Using data-dependent kernels for kernel machines one can build semi-supervised classifiers by buildin...
متن کاملCluster Kernels for Semi-Supervised Learning
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach.
متن کاملLearning Kernels for Semi-Supervised Clustering
As a recent emerging technique, semi-supervised clustering has attracted significant research interest. Compared to traditional clustering algorithms, which only use unlabeled data, semi-supervised clustering employs both unlabeled and supervised data to obtain a partitioning that conforms more closely to the user's preferences. Several recent papers have discussed this problem (Cohn, Caruana, ...
متن کاملSemi-supervised Protein Classification Using Cluster Kernels
MOTIVATION Building an accurate protein classification system depends critically upon choosing a good representation of the input sequences of amino acids. Recent work using string kernels for protein data has achieved state-of-the-art classification performance. However, such representations are based only on labeled data--examples with known 3D structures, organized into structural classes--w...
متن کاملNonparametric Transforms of Graph Kernels for Semi-Supervised Learning
We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of graph Laplacians, and combine labeled and unlabeled data in a systematic fashion. Unlike previous work using diffusion kernels and Gaussian random field kernels, a nonparametric kernel approach is presented that incorporat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computers Communications & Control
سال: 2010
ISSN: 1841-9836,1841-9836
DOI: 10.15837/ijccc.2010.4.2496